Advertisement

The Gut Microbiota

The Gateway to Improved Metabolism

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Gastroenterology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Flegal K.M.
        Epidemiologic aspects of overweight and obesity in the United States.
        Physiol Behav. 2005; 86: 599-602
        • Sturm R.
        • Hattori A.
        Morbid obesity rates continue to rise rapidly in the United States.
        Int J Obes (Lond). 2013; 37: 889-891
        • Bray G.A.
        Obesity: a time bomb to be defused.
        Lancet. 1998; 352: 160-161
        • de Onis M.
        • Blossner M.
        • Borghi E.
        Global prevalence and trends of overweight and obesity among preschool children.
        Am J Clin Nutr. 2010; 92: 1257-1264
        • Ogden C.L.
        • Carroll M.D.
        • Curtin L.R.
        • et al.
        Prevalence of overweight and obesity in the United States, 1999-2004.
        JAMA. 2006; 295: 1549-1555
        • Turnbaugh P.J.
        • Ridaura V.K.
        • Faith J.J.
        • et al.
        The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice.
        Sci Transl Med. 2009; 1: 6ra14
        • Liou A.P.
        • Paziuk M.
        • Luevano J.-M.
        • et al.
        Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity.
        Sci Transl Med. 2013; 5: 178ra41
        • Amar J.
        • Serino M.
        • Lange C.
        • et al.
        Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept.
        Diabetologia. 2011; 54: 3055-3061
        • Ley R.E.
        • Bäckhed F.
        • Turnbaugh P.
        • et al.
        Obesity alters gut microbial ecology.
        Proc Natl Acad Sci U S A. 2005; 102: 11070-11075
        • Shen W.
        • Gaskins H.R.
        • McIntosh M.K.
        Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes.
        J Nutr Biochem. 2014; 25: 270-280
        • Ley R.E.
        • Turnbaugh P.J.
        • Klein S.
        • et al.
        Microbial ecology: human gut microbes associated with obesity.
        Nature. 2006; 444: 1022-1023
        • Gill S.R.
        • Pop M.
        • Deboy R.T.
        • et al.
        Metagenomic analysis of the human distal gut microbiome.
        Science. 2006; 312: 1355-1359
        • Ojeda P.
        • Bobe A.
        • Dolan K.
        • et al.
        Nutritional modulation of gut microbiota - the impact on metabolic disease pathophysiology.
        J Nutr Biochem. 2016; 28: 191-200
        • Hoffmann C.
        • Dollive S.
        • Grunberg S.
        • et al.
        Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents.
        PLoS One. 2013; 8: e66019
        • Borgo F.
        • Verduci E.
        • Riva A.
        • et al.
        Relative abundance in bacterial and fungal gut microbes in obese children: a case control study.
        Child Obes. 2016; ([Epub ahead of print])
        • de Araújo T.V.
        • Andrade E.F.
        • Lobato R.V.
        • et al.
        Effects of beta-glucans ingestion (Saccharomyces cerevisiae) on metabolism of rats receiving high-fat diet.
        J Anim Physiol Anim Nutr (Berl). 2016; https://doi.org/10.1111/jpn.12452
        • Everard A.
        • Matamoros S.
        • Geurts L.
        • et al.
        Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice.
        MBio. 2014; 5: e01011-e01014
        • Schneeberger M.
        • Everard A.
        • Gómez-Valadés A.G.
        • et al.
        Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice.
        Sci Rep. 2015; 5: 16643
        • Everard A.
        • Belzer C.
        • Geurts L.
        • et al.
        Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.
        Proc Natl Acad Sci U S A. 2013; 110: 9066-9071
        • Devkota S.
        • Wang Y.
        • Musch M.W.
        • et al.
        Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice.
        Nature. 2012; 487: 104-108
        • Subramanian S.
        • Huq S.
        • Yatsunenko T.
        • et al.
        Persistent gut microbiota immaturity in malnourished Bangladeshi children.
        Nature. 2014; 510: 417-421
        • David L.A.
        • Maurice C.F.
        • Carmody R.N.
        • et al.
        Diet rapidly and reproducibly alters the human gut microbiome.
        Nature. 2014; 505: 559-563
        • Carmody R.N.
        • Gerber G.K.
        • Luevano Jr., J.M.
        • et al.
        Diet dominates host genotype in shaping the murine gut microbiota.
        Cell Host Microbe. 2015; 17: 72-84
        • Sonnenburg E.D.
        • Smits S.A.
        • Tikhonov M.
        • et al.
        Diet-induced extinctions in the gut microbiota compound over generations.
        Nature. 2016; 529: 212-215
        • Howe A.
        • Ringus D.L.
        • Williams R.J.
        • et al.
        Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice.
        ISME J. 2016; 10: 1217-1227
        • Tadross J.A.
        • le Roux C.W.
        The mechanisms of weight loss after bariatric surgery.
        Int J Obes (Lond). 2009; 33: S28-S32
        • Islam K.B.
        • Fukiya S.
        • Hagio M.
        • et al.
        Bile acid is a host factor that regulates the composition of the cecal microbiota in rats.
        Gastroenterology. 2011; 141: 1773-1781
        • Begley M.
        • Gahan C.G.
        • Hill C.
        The interaction between bacteria and bile.
        FEMS Microbiol Rev. 2005; 29: 625-651
        • Kashyap S.R.
        • Daud S.
        • Kelly K.R.
        • et al.
        Acute effects of gastric bypass versus gastric restrictive surgery on beta-cell function and insulinotropic hormones in severely obese patients with type 2 diabetes.
        Int J Obes (Lond). 2010; 34: 462-471
        • Yan M.
        • Song M.M.
        • Bai R.X.
        • et al.
        Effect of Roux-en-Y gastric bypass surgery on intestinal Akkermansia muciniphila.
        World J Gastrointest Surg. 2016; 8: 301-307
        • Furet J.P.
        • Kong L.C.
        • Tap J.
        • et al.
        Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers.
        Diabetes. 2010; 59: 3049-3057
        • Zhang H.
        • DiBaise J.K.
        • Zuccolo A.
        • et al.
        Human gut microbiota in obesity and after gastric bypass.
        Proc Natl Acad Sci U S A. 2009; 106: 2365-2370
        • Carvalho B.M.
        • Guadagnini D.
        • Tsukumo D.M.
        • et al.
        Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice.
        Diabetologia. 2012; 55: 2823-2834
        • Everard A.
        • Lazarevic V.
        • Gaïa N.
        • et al.
        Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity.
        ISME J. 2014; 8: 2116-2130
        • Baptissart M.
        • Vega A.
        • Maqdasy S.
        • et al.
        Bile acids: from digestion to cancers.
        Biochimie. 2013; 95: 504-517
        • Watanabe M.
        • Houten S.M.
        • Mataki C.
        • et al.
        Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation.
        Nature. 2006; 439: 484-489
        • Swann J.R.
        • Want E.J.
        • Geier F.M.
        • et al.
        Systemic gut microbial modulation of bile acid metabolism in host tissue compartments.
        Proc Natl Acad Sci U S A. 2011; 108: 4523-4530
        • Inagaki T.
        • Moschetta A.
        • Lee Y.K.
        • et al.
        Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.
        Proc Natl Acad Sci U S A. 2006; 103: 3920-3925
        • Palazzo M.
        • Balsari A.
        • Rossini A.
        • et al.
        Activation of enteroendocrine cells via TLRs induces hormone, chemokine, and defensin secretion.
        J Immunol. 2007; 178 (Available at:) (Accessed May 26, 2016): 4296-4303
        • Dirksen C.
        • Jørgensen N.B.
        • Bojsen-Møller K.N.
        • et al.
        Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass.
        Int J Obes (Lond). 2013; 37: 1452-1459
        • le Roux C.W.
        • Borg C.
        • Wallis K.
        • et al.
        Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation.
        Ann Surg. 2010; 252: 50-56
        • Batterham R.L.
        • Cowley M.A.
        • Small C.J.
        • et al.
        Gut hormone PYY(3-36) physiologically inhibits food intake.
        Nature. 2002; 418: 650-654
        • Semova I.
        • Carten J.D.
        • Stombaugh J.
        • et al.
        Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish.
        Cell Host Microbe. 2012; 12: 277-288
        • Leone V.
        • Gibbons S.M.
        • Martinez K.
        • et al.
        Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism.
        Cell Host Microbe. 2015; 17: 681-689
        • Schwiertz A.
        • Taras D.
        • Schäfer K.
        • et al.
        Microbiota and SCFA in lean and overweight healthy subjects.
        Obesity. 2010; 18: 190-195
        • De Vadder F.
        • Kovatcheva-Datchary P.
        • Goncalves D.
        • et al.
        Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits.
        Cell. 2014; 156: 84-96
        • Karlsson F.H.
        • Tremaroli V.
        • Nookaew I.
        • et al.
        Gut metagenome in European women with normal, impaired and diabetic glucose control.
        Nature. 2013; 498: 99-103
        • Karastergiou K.
        • Fried S.K.
        • Xie H.
        • et al.
        Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots.
        J Clin Endocrinol Metab. 2013; 98: 362-371
        • Cani P.D.
        • Delzenne N.M.
        Gut microflora as a target for energy and metabolic homeostasis.
        Curr Opin Clin Nutr Metab Care. 2007; 10: 729-734
        • Caesar R.
        • Tremaroli V.
        • Kovatcheva-Datchary P.
        • et al.
        Crosstalk between gut microbiota and dietary lipids aggravates wat inflammation through TLR signaling.
        Cell Metab. 2015; 22: 658-668
        • Anhê F.F.
        • Roy D.
        • Pilon G.
        • et al.
        A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice.
        Gut. 2015; 64: 872-883
        • Collins B.
        • Hoffman J.
        • Martinez K.
        • et al.
        A polyphenol-rich fraction obtained from table grapes decreases adiposity, insulin resistance and markers of inflammation and impacts gut microbiota in high-fat-fed mice.
        J Nutr Biochem. 2016; 31: 150-165
        • Swartz T.D.
        • Duca F.A.
        • de Wouters T.
        • et al.
        Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota.
        Br J Nutr. 2012; 107: 621-630
        • Duca F.A.
        • Swartz T.D.
        • Sakar Y.
        • et al.
        Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota.
        PLoS One. 2012; 7: e39748
        • Wichmann A.
        • Allahyar A.
        • Greiner T.U.
        • et al.
        Microbial modulation of energy availability in the colon regulates intestinal transit.
        Cell Host Microbe. 2013; 14: 582-590
        • Rabot S.
        • Membrez M.
        • Bruneau A.
        • et al.
        Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism.
        FASEB J. 2010; 24: 4948-4959
        • Sayin S.I.
        • Wahlström A.
        • Felin J.
        • et al.
        Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist.
        Cell Metab. 2013; 17: 225-235
        • Björkholm B.
        • Bok C.M.
        • Lundin A.
        • et al.
        Intestinal microbiota regulate xenobiotic metabolism in the liver.
        PLoS One. 2009; 4: e6958
        • Gao J.
        • He J.
        • Zhai Y.
        • et al.
        The constitutive androstane receptor is an anti-obesity nuclear receptor that improves insulin sensitivity.
        J Biol Chem. 2009; 284: 25984-25992
        • Dong B.
        • Saha P.K.
        • Huang W.
        • et al.
        Activation of nuclear receptor CAR ameliorates diabetes and fatty liver disease.
        Proc Natl Acad Sci U S A. 2009; 106: 18831-18836
        • Moore D.D.
        Physiology: a metabolic minuet.
        Nature. 2013; 502: 454-455
        • Kohsaka A.
        • Laposky A.D.
        • Ramsey K.M.
        • et al.
        High-fat diet disrupts behavioral and molecular circadian rhythms in mice.
        Cell Metab. 2007; 6: 414-421
        • Mukherji A.
        • Kobiita A.
        • Ye T.
        • et al.
        Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs.
        Cell. 2013; 153: 812-827
        • Mennigen R.
        • Nolte K.
        • Rijcken E.
        • et al.
        Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis.
        Am J Physiol Gastrointest Liver Physiol. 2009; 296: G1140-G1149
        • Wang J.
        • Tang H.
        • Zhang C.
        • et al.
        Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice.
        ISME J. 2015; 9: 1-15
        • Nilsson A.
        • Johansson E.
        • Ekström L.
        • et al.
        Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast: a randomized cross-over study.
        PLoS One. 2013; 8: e59985
        • Xiao S.
        • Fei N.
        • Pang X.
        • et al.
        A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome.
        FEMS Microbiol Ecol. 2014; 87: 357-367
        • Ettinger G.
        • MacDonald K.
        • Reid G.
        • et al.
        The influence of the human microbiome and probiotics on cardiovascular health.
        Gut Microbes. 2014; 5: 719-728
        • Alisi A.
        • Bedogni G.
        • Baviera G.
        • et al.
        Randomised clinical trial: the beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis.
        Aliment Pharmacol Ther. 2014; 39: 1276-1285
        • Dhiman R.K.
        • Rana B.
        • Agrawal S.
        • et al.
        Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial.
        Gastroenterology. 2014; 147: 1327-1337.e3
        • Bakken J.S.
        Fecal bacteriotherapy for recurrent Clostridium difficile infection.
        Anaerobe. 2009; 15: 285-289
        • Tremaroli V.
        • Karlsson F.
        • Werling M.
        • et al.
        Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation.
        Cell Metab. 2015; 22: 228-238
        • Vrieze A.
        • Van Nood E.
        • Holleman F.
        • et al.
        Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome.
        Gastroenterology. 2012; 143: 913-916.e7
        • Bakken J.S.
        • Borody T.
        • Brandt L.J.
        • et al.
        Treating Clostridium difficile infection with fecal microbiota transplantation.
        Clin Gastroenterol Hepatol. 2011; 9: 1044-1049
        • Tsilingiri K.
        • Barbosa T.
        • Penna G.
        • et al.
        Probiotic and postbiotic activity in health and disease: comparison on a novel polarised ex-vivo organ culture model.
        Gut. 2012; 61: 1007-1015